

Robot Programs in RoboDK

Off-line Programming

https://robodk.com/
info@robodk.com
+1 -855-692-7772

https://robodk.com/
mailto:info@robodk.com

Contents
Robot Programs .. 2

Offline Programming .. 2
Create a Program .. 3
Program Instructions .. 3

Joint Move .. 3
Linear Move .. 4
Set Reference Frame ... 5
Set Tool Frame ... 6
Circular Move ... 6
Set Speed .. 7
Show Message ... 7
Pause ... 7
Program call ... 8
Set/Wait IO ... 8
Set Rounding value .. 9
Simulation event ... 10

Simulate Program .. 11
Generate Program ... 12
Transfer Program ... 13
Select Post Processor .. 14
Program generation settings .. 15
Convert circular to linear movements ... 16
Split large robot Programs ... 17
Inline subprograms .. 17
Post processors vs Drivers... 18

Offline Programming 2

Robot Programs
RoboDK is a simulator focused on industrial robot applications. This means that robot programs can be
created, simulated and generated offline for a specific robot arm and robot controller. In other words, RoboDK
is software for Offline Programming.

To create robot programs, it is required to select a robot, load the robot tools and use one or more CAD to path
features to create programs by adding targets or using specific tools (such as converting CNC programs to
robot programs).

An extensive library of industrial robots is available. Industrial robots are modelled in RoboDK the same way
they behave using vendor-specific controllers, including axis limits, sense of motion and axis linking.

This section shows how robot programs can be created, simulated and generated for a specific robot controller
using the RoboDK Graphical User Interface (GUI).

Note: This section describes how to create robot programs using the Graphical User Interface (GUI) only. The
RoboDK API can be used to complement these programs or to completely create a robot program. Visit the
RoboDK API section for more information.

Offline Programming

Offline Programming (or Off-Line Programming) means programming robots outside the production
environment. Offline Programming eliminates production downtime caused by shop floor programming
(programming using the teach pendant).

Simulation and Offline Programming allows studying multiple scenarios of a robot cell before setting up the
production cell. Mistakes commonly made in designing a work cell can be predicted in time.

Offline Programming is the best way to maximize return on investment for robot systems and it requires
appropriate simulation tools. The time for the adoption of new programs can be cut from weeks to a single day,
enabling the robotization of short-run production.

https://robodk.com/library
RoboDK-API.html#RoboDKAPI

Offline Programming 3

Create a Program

A simulation can be accomplished by adding a sequence of instructions in a program. Each instruction
represents specific code for a specific controller, however, RoboDK offers a Graphical User Interface (GUI) to
easily build robot programs, in a generic way, without the need to write code.

The code specific to a robot controller will be generated automatically when the program is generated. To
create a new empty program using the RoboDK Graphical User Interface:

1. Select ProgramĄ Add Program
Alternatively, select the corresponding button in the toolbar.

2. Select ToolsĄRename itemé (F2) to rename the program

Note: Programs are automatically created if an instruction is added but there is no program available in the
station.

This action will create an empty program and will allow adding new instructions by right clicking the program or
selecting an instruction from the Program menu. The next section Program Instructions provides more
information about adding instructions.

Note: Simulations and programs can also be fully created using the RoboDK API and a specific programming
language, such as Python, C# or Matlab. The RoboDK API section provides more information.

Program Instructions

It is possible to add new instructions by right clicking a program or from the Program menu, as shown in the
previous section.

Tip: Select a specific instruction to add a new instruction after the selected instruction.

Tip: It is possible to drag and drop instructions inside a program or between different programs to reorder
them.

This section describes the instructions supported by the RoboDK graphical user interface for robot offline
programming.

Joint Move

Select ProgramĄ Move Joint Instruction to add a new joint movement instruction. Alternatively, select
the corresponding button in the toolbar.

Interface.html#MenuProgram
Robot-Programs.html#ProgInstructions
RoboDK-API.html#RoboDKAPI
Interface.html#MenuProgram

Offline Programming 4

Unless a target is selected before adding the instruction, the movement instruction will create a new target and
they will be linked. If the target is moved the movement is also modified.

If this is the first instruction that is added to the program, two more instructions will be added before the
movement instruction: a Reference Frame selection and a Tool Frame selection. This will make sure that when
the program reaches the movement instruction the robot is using the same reference and tool frames used to
create this new target.

Note: Right click the Movement instruction and select Target optionsé (F3) to open the target options menu.
The target can be modified from this window or directly from the 3D view.

Linear Move

Select ProgramĄ Move Linear Instruction to add a new linear movement instruction. Alternatively, select
the corresponding button in the toolbar.

Unless a target is selected before adding the instruction, the movement instruction will create a new target and
they will be linked. If the target is moved the movement is also modified.

Joint Moves and Linear Moves behave the same way and can be easily switched from one type to the other.

Same as with the Joint Move Instruction, if this is the first instruction that is added to a program, two more
instructions will be added before the movement instruction: a Reference Frame selection and a Tool Frame
selection.

Important: It is recommended to keep the first movement of each program as a Joint Move using a Joint
target. This will properly set up the desired configuration from the first movement and make sure that the real
robot is moving the same way it was simulated.

Contrary to Joint Movements, Linear Movements are sensible to robot singularities and axis limits. For
example, 6-axis robots canôt cross a singularity following a linear move. The following image shows an
example saying Joint 5 is too close to a singularity (0 degrees). [é] Consider a Joint move instead. As shown
in the following image.

Robot-Programs.html#InsSetFrame
Robot-Programs.html#InsSetTCP
Robot-Programs.html#InsSetFrame
Robot-Programs.html#InsSetTCP
Robot-Programs.html#InsSetTCP

Offline Programming 5

If a linear move is not strictly necessary, right click the movement instruction and change it to a Joint
Instruction.

Alternatively, the target, the TCP or the position of the reference frame must be modified to avoid the
singularity.

Set Reference Frame

Select ProgramĄ Set Reference Frame Instruction to use a specific reference frame. This will update
the given reference frame on the controller for the following movement instructions and will change the Active
reference frame of the robot in RoboDK for simulation purposes. That means that movement instructions to
specific targets (Cartesian targets) will be made with respect to the last reference frame set.

The reference frame is a variable also known as Work Object (ABB robots), UFRAME (Fanuc robots), FRAME
(for Motoman robots) or $BASE (for KUKA robots).

Note: Specific controllers support setting reference frames using a numbered reference frame (such as Fanuc
and Motoman controllers). In that case, the name of the reference frame can end with a number (such as
Frame 4 to set the frame index 4).

Offline Programming 6

Set Tool Frame

Select ProgramĄ Set Tool Frame Instruction to use a specific tool frame (TCP). This will update the
given tool frame on the program for the following movement instructions and will change the Active tool frame
of the robot in RoboDK for simulation purposes. That means that movement instructions to specific target
(Cartesian targets) will be made with respect to the last tool frame set.

The reference frame is a variable also known as ToolData (ABB robots), UTOOL (Fanuc robots), TOOL (for
Motoman robots) or $TOOL (for KUKA robots).

Note: Specific controllers support setting tool frames using a numbered tool (such as Fanuc and Motoman
controllers). In that case, the name of the tool frame can end with a number (such as Tool 4 to set the tool
index 4).

Circular Move

Select ProgramĄ Move Circular Instruction to add a new circular movement instruction. Alternatively,
select the corresponding button in the toolbar.

Unless two targets are selected before adding the instruction, the movement instruction will create no new
targets. It is required to add two more targets separately and link them from the circular move instruction, as
shown in the next image.

The circular path is an arc created from the point where the robot is located, passing through the first circular
point (Target Linked 1) and ending at the end point (Target Linked 2).

Important: It is not possible to accomplish a full circle with only one circular instruction. A full circle must be
split into two separate circular moves.

Offline Programming 7

Set Speed

Select ProgramĄ Set Speed Instruction to add a new instruction that changes the speed and/or the
acceleration. It is possible to specify speed and accelerations in the joint space and in the cartesian space.

Activate the corresponding cases to impose a specific speed and/or acceleration in the program. The robot
speed is applied from the moment this instruction is executed.

The robot speed can also be changed in the robot parameters menu: Double click the robot, then, select
parameters.

Note: Not all robot controllers support setting accelerations accurately.

Important: Setting the right speed is important to accurately calculate the program time (cycle time). More
information available in the cycle time section.

Show Message

Select ProgramĄ Show Message Instruction to add a new instruction that will display a message on the
teach pendant.

Note: Not all robot controllers support displaying messages on the teach pendant from a program. In that case,
this instruction will have no effect.

Pause

Select ProgramĄ Pause Instruction to add a new instruction that will pause the program execution for
some time or stop the program until the operator desires to resume the program.

General.html#CycleTime

Offline Programming 8

Note: Set the pause delay value to -1 to pause the program until the operator desires to resume the program.
In that case, the instruction will be automatically named Stop.

Important: In the simulation, a 5 second pause will take 1 second to simulate for the default simulation ratio of
5. More information is available in the Simulation section.

Program call

Select ProgramĄ Program Call Instruction to add a call to a sub program from the current program.

By default, this is a blocking call to a specific program. However, it is possible to switch to Insert Code to enter
code specific at the location of this instruction. This might be useful for a specific application and a specific
controller.

Tip: Select Select program to automatically fill the text field. Otherwise, a text match should also work. If there
is a name match with the sub program used in the instruction, this subprogram will be simulated in RoboDK.

Tip: Enter multiple lines to automatically set up multiple program call instructions in a row.

Switch from Program Call to Start Thread to provoke a non-blocking call to a sub program. In this case, the
controller will start a new thread. This option is only available for certain controllers and only works for specific
operations.

Tip: A main program used for simulation purposes only may use the Start Thread option to start the simulation
of multiple programs at the same time (for example when two or more robots are simulated).

Set/Wait IO

Select ProgramĄ Set or Wait I/O Instruction to change the state of Digital Outputs (DO). By default, this
instruction is set to Set Digital Output. This instruction also allows waiting for a specific Digital Input (DI) to
switch to a specific state.

The IO Name can be a number or a text value if it is a named variable. The IO Value can be a number (0 for
False and 1 for True) or a text value if it is a named state.

Note: This instruction also supports setting Analog Outputs (AO) or waiting for Analog Inputs (AI) on some
robot controllers. In that case, it is possible to provide decimal numbers or specific text instead of numbers.

Robot-Programs.html#SimulateProgram

Offline Programming 9

Set to Wait for Digital Input to stop the program execution until a specific input changes to a specific value.
Furthermore, most robot controllers support a timeout delay to raise an error if the waiting time exceeds a
specific value. Check the Timeout (ms) option to activate this feature.

Tip: It is a good practice, for example, if the robot has a specific hardware on the cell (such as a gripper or a
milling spindle), to activate this specific hardware using a Digital Output (DO), then waiting for a specific Digital
Input (DI) to switch to a specific state.

Altering simulated Digital Inputs and Digital Outputs will create new station variables. To check the state of
these variables you can right click the station and select Station Parameters. It is also possible to read or
modify these variables through the API.

Set Rounding value

Select ProgramĄ Set Rounding Instruction to alter the rounding accuracy. The rounding accuracy used
to smooth the edges between consecutive movements. This change takes effect from the moment it is
executed inside a program (same as with all the other instructions), so it is typical to set this value at the
beginning of a program.

Without a rounding instruction, the robot will reach the speed of 0 at the end of each movement (unless the
next movement is tangent with the previous movement). This will provoke high accelerations and quick speed
changes to ensure the best accuracy for each movement.

This value is also known as Blending radius (Universal Robots), ZoneData (ABB robots), CNT/FINE (Fanuc
robots), Cornering (Mecademic robots) or $APO.CDIS/$APO.CPTP/Advance (KUKA robots).

Note: Set the Rounding value to -1 to provoke fine movements. This means that the robot will not round the
path edges.

Offline Programming 10

Tip: A high rounding value will ensure a constant speed through the robot path in exchange of losing accuracy
on the path edges. Depending on each application, it is common to find a good compromise between accuracy
and a smooth speed.

Some controllers require setting this value as a percentage, for example on a Fanuc controller, if you want to
provide the command CNT5 you should enter the value 5.

You can also specify the rounding parameter in the Program Events window if you are generating your
programs for robot machining, 3D printing or curve/point following.

RoboDKôs path accuracy tests may allow to have a better understanding of the effects of different rounding
strategies.

Simulation event

Select ProgramĄ Simulation Event Instruction to provoke a specific simulation event. Simulation events
have no impact on generated code and are used only to provoke a specific event for simulation purposes.

Simulation events using the graphical user interface allow you to:

¶ attach or detach objects to robot tools

¶ show or hide objects or tools

¶ change the position of objects and reference frames

Robot-Machining.html#MachiningEvents
Robot-Validation-ISO9283.html#ISO9283-Results

Offline Programming 11

For example, if the robot moves to a specific location to grab an object we can set up an Attach object event
to move that object together with the robot. Then, after the robot has moved and it is ready to leave the objects
we can set up a Detach object event to leave any objects the tool has grabbed.

Note: Specific events can also be simulated using macros (programing experience is required). For example,
using the API it is possible to make objects appear randomly at specific locations for a pick and place
simulation.

Note: When attaching object to the tool, the closest object is attached if it is not farther from a given distance.
This distance is 200 mm by default and can be changed in: ToolsĄOptionsĄMaximum distance to attach an
object to a robot tool. Also, by default, the distance is checked from the TCP location to the object reference.
Alternatively, it is possible to use the distance between the TCP and the object geometry by selecting Check
shortest distance between TCP and the object shape.

Simulate Program

Double click the program to start the program simulation.

Alternatively:

1. Right click the program
2. Select Run

Offline Programming 12

A simulation bar will appear at the bottom if the program is double clicked. It is possible to slide the simulation
to move the simulation forward or backwards using the simulation bar.

Tip: Select ProgramĄ Fast simulation to speed up the simulation (or hold the space bar). This option is
also available in the toolbar.

RoboDK simulates 5 times faster than real time by default. That means that if a program takes 30 seconds to
execute it will be simulated in 30/5=6 seconds. Speeding up the simulation increases this ratio to 100. Normal
and fast simulation speeds can be changed in the ToolsĄOptionsĄMotion menu.

Tip: Select ProgramĄ Pause to pause the simulation (or the Backspace key).

Tip: Select Esc key to stop the simulation or double click the program again.

Tip: Double click each instruction individually to execute them one by one.

Tip: Right click a movement instruction and select Start from here to resume the program execution from that
instruction, as shown in the next image.

Generate Program

When you have a program ready to be exported to the robot you can generate the program file required by
your robot controller.

Follow these steps to generate a robot program:

1. Right click a program.
2. Select Generate Robot Program (F6).

Options-Menu.html#OptMotion

Offline Programming 13

You should then see the robot program displayed in a text editor.

Note: You can also select ProgramĄGenerate Program(s) (F6) to generate one or more robot programs
when you have one or more programs selected.

Tip: Hold the Control key (Ctrl) to select multiple programs at the same time and generate them all at once.

Robot programs are saved in the Documents folder by default (C:/Users/Your
Name/Documents/RoboDK/Programs/). You can change this folder by selecting ToolsĄOptions, select the
Program tab and click on Set right beside the Robot programs folder.

Note: It is best practice for some robot controllers to integrate the generated program and required
subprograms with same program file. RoboDK already takes care of this detail, and you should see the
subprograms included in your main program for the robot controllers that support this feature (for example:
ABB, Universal Robots or KUKA controllers). On the other hand, for robots that donôt support this feature youôll
have to generate multiple files and transfer to the robot controller to properly run all programs (for example, on
Fanuc or Yaskawa/Motoman controllers). Some post processors allow you to configure this behavior. You can
find more settings in ToolsĄOptions and select the Program tab.

Alternatively, you can also right click a program and select Generate Robot Program as é (Shift+F6) to
generate the program specifying the location where you would like to save it.

Transfer Program

It is possible to transfer a program from the computer directly to the robot. This option usually sends the
program to the robot through FTP protocol or other specific protocols, such as using socket messaging or
serial connection. First, it is required to enter the robot IP and FTP settings in the robot connection menu:

1. Right click a robot.
2. Select Connect to roboté A window will appear on the left.
3. Enter the robot IP.
4. Select More options to enter the FTP settings and FTP credentials (if required)

Tip: Select Ping to see if the robot can be found in the network.

Offline Programming 14

Once the network settings have been provided and the robot is properly connected, follow these steps to
transfer the program to the robot directly from RoboDK:

1. Right click a program.
2. Select Send program to robot (Ctrl+F6).

A popup window will display the status (success or failed).

Note: Programs can also be transferred through a USB disk or other media. The Robot Tips section (brand-
specific section) provides more information for some of the supported robot brands.

Important: The Connect button is only useful when using the robot driver. It is possible to achieve a program
transfer without connecting the robot driver. The robot driver allows moving the robot point by point from
RoboDK and debug programs in an easy manner (Run on Robot option). The robot driver also allows moving
the robot directly through the API.

Tip: Use an FTP Client such as FileZilla to better browse the contents of your robot controller and retrieve the
remote FTP path for your programs. Most robot controllers support FTP transfer.

Select Post Processor

The conversion from the RoboDK simulation to a specific robot program is done by a Post Processor. The Post
Processor defines how robot programs should be generated for a specific robot. Each robot has a
specific/default post processor by default in RoboDK.

To select a specific post processor for a robot:

1. Right click a robot or a program.
2. Select Select Post Processor.
3. Choose a post processor from the list.
4. Select OK.

Post-Processors.html#PostProcessor

Offline Programming 15

The change is now applied, and you can program can be generated again to see the result.

Note: A Post Processor is linked to a specific robot. Changing the post processor of a program will update the
post processor for all programs linked to the same robot.

Post Processors in RoboDK provide complete flexibility to generate the robot programs for specific
requirements. RoboDK provides Post Processors for most robot brands. Post processors can be easily created
or modified. More information about post processors in a dedicated section for post processors.

Program generation settings

You can customize the way you generate programs for your robot.

Follow these steps to see the program generation settings:

1. Select ToolsĄOptions.
2. Select the Program tab.

Post-Processors.html#PostProcessor

Offline Programming 16

This menu allows you to customize program generation, such as:

1. Split joint movements into smaller steps.
2. Split linear movements into smaller steps.
3. Convert circular movements to small linear movements.
4. Split large robot programs into subprograms.
5. Specify the default location to save your robot programs.
6. Specify the default text editor for robot programs.

Tip: Additional settings may be defined or overridden by the selected post processor.

Convert circular to linear movements

You can easily convert circular moments into small linear movements when you generate programs for your
robot. This is useful if your controller does not support arc movements.

Follow these steps to generate arcs as small linear movements:

1. Select ToolsĄOptions.
2. Select the Program tab.
3. Select Avoid arcs.
4. Specify the Maximum arc size (mm) which defines the size of the linear movements along the arc.

Offline Programming 17

Note: RoboDK wonôt generate linear movements closer than the Minimum step size (mm) defined in this
window. Therefore, if your Minimum step size (mm) tolerance is greater than the Maximum arc size (mm)
tolerance your linear movements will be larger along the arc.

Split large robot Programs

Large robot programs can exceed your robot controller limitations. The controller limitations can be the file size
or the number of lines per program. For example, a robot program made for robot machining or 3D printing can
thousands of lines of code.

In this case it is better to split such a long program in smaller sub programs, including one main program that
runs the subprograms.

Follow these steps to automatically split a long program:

1. Select ToolsĄOptionsĄProgram.
2. Check Limit the maximum number of lines per program and provide the desired maximum of lines

per program to generate per file.

Tip: Most post processors have a default limit of maximum number of lines per program that can be changed
or overridden by this procedure (a variable named MAX_LINES_X_PROG).

Inline subprograms

When you generate a program that calls a subprogram, RoboDK will automatically create an instruction to call
that subprogram. On the other hand, you can customize program output to inline subprograms directly on your
main program and prevent program calls.

Offline Programming 18

Note: Some post processors will include subprograms in the main program file by default (such as the default
ABB post processor) and other post processors will not include the subprograms as they are usually separate
files in the robot controller (such as the default Fanuc post processor).

Tip: This feature is useful if your controller requires numbered programs instead of named programs.

Follow these steps to inline sub-programs to avoid calling offline programs by following these steps:

1. Select ToolsĄOptions.
2. Select the Program tab.
3. Check the option Inline subprograms.

From now on, when you generate programs that contain subprograms you will obtain the contents of these
subprograms directly in the first/main program.

Post processors vs Drivers

Post processors and robot drivers use different methods to move robots. While a post processor allows you to
generate programs offline, a driver allows you to have real time communication with your robot.

A post processor is used for offline programming and is responsible for converting the RoboDK robot
program into the native programming language of the associated robot controller. For instance, the ABB post
processor generates .mod files for IRC5 controllers. The post processor also includes program uploading to
the robot controller, often by FTP. The following functionalities of a program are handled by the post processor:

1. Generate Robot Program
2. Generate Robot Program asé
3. Send Program to Robot
4. Start on Robot (in combination with the driver)

Post-Processors.html#PostProcessor

